The synthetic division table is:
$$ \begin{array}{c|rrrr}-6&1&7&9&11\\& & -6& -6& \color{black}{-18} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{3}&\color{orangered}{-7} \end{array} $$The solution is:
$$ \dfrac{ x^{3}+7x^{2}+9x+11 }{ x+6 } = \color{blue}{x^{2}+x+3} \color{red}{~-~} \dfrac{ \color{red}{ 7 } }{ x+6 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 6 = 0 $ ( $ x = \color{blue}{ -6 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-6}&1&7&9&11\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-6&\color{orangered}{ 1 }&7&9&11\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -6 } \cdot \color{blue}{ 1 } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-6}&1&7&9&11\\& & \color{blue}{-6} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 7 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrr}-6&1&\color{orangered}{ 7 }&9&11\\& & \color{orangered}{-6} & & \\ \hline &1&\color{orangered}{1}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -6 } \cdot \color{blue}{ 1 } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-6}&1&7&9&11\\& & -6& \color{blue}{-6} & \\ \hline &1&\color{blue}{1}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 9 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrr}-6&1&7&\color{orangered}{ 9 }&11\\& & -6& \color{orangered}{-6} & \\ \hline &1&1&\color{orangered}{3}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -6 } \cdot \color{blue}{ 3 } = \color{blue}{ -18 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-6}&1&7&9&11\\& & -6& -6& \color{blue}{-18} \\ \hline &1&1&\color{blue}{3}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 11 } + \color{orangered}{ \left( -18 \right) } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrrr}-6&1&7&9&\color{orangered}{ 11 }\\& & -6& -6& \color{orangered}{-18} \\ \hline &\color{blue}{1}&\color{blue}{1}&\color{blue}{3}&\color{orangered}{-7} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+x+3 } $ with a remainder of $ \color{red}{ -7 } $.