The synthetic division table is:
$$ \begin{array}{c|rrrr}-2&1&2&3&8\\& & -2& 0& \color{black}{-6} \\ \hline &\color{blue}{1}&\color{blue}{0}&\color{blue}{3}&\color{orangered}{2} \end{array} $$The solution is:
$$ \dfrac{ x^{3}+2x^{2}+3x+8 }{ x+2 } = \color{blue}{x^{2}+3} ~+~ \dfrac{ \color{red}{ 2 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&2&3&8\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-2&\color{orangered}{ 1 }&2&3&8\\& & & & \\ \hline &\color{orangered}{1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 1 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&2&3&8\\& & \color{blue}{-2} & & \\ \hline &\color{blue}{1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-2&1&\color{orangered}{ 2 }&3&8\\& & \color{orangered}{-2} & & \\ \hline &1&\color{orangered}{0}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&2&3&8\\& & -2& \color{blue}{0} & \\ \hline &1&\color{blue}{0}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 3 } + \color{orangered}{ 0 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrr}-2&1&2&\color{orangered}{ 3 }&8\\& & -2& \color{orangered}{0} & \\ \hline &1&0&\color{orangered}{3}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 3 } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&1&2&3&8\\& & -2& 0& \color{blue}{-6} \\ \hline &1&0&\color{blue}{3}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 8 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ 2 } $
$$ \begin{array}{c|rrrr}-2&1&2&3&\color{orangered}{ 8 }\\& & -2& 0& \color{orangered}{-6} \\ \hline &\color{blue}{1}&\color{blue}{0}&\color{blue}{3}&\color{orangered}{2} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{2}+3 } $ with a remainder of $ \color{red}{ 2 } $.