The synthetic division table is:
$$ \begin{array}{c|rrr}1&10&0&-10\\& & 10& \color{black}{10} \\ \hline &\color{blue}{10}&\color{blue}{10}&\color{orangered}{0} \end{array} $$The solution is:
$$ \dfrac{ 10x^{2}-10 }{ x-1 } = \color{blue}{10x+10} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{1}&10&0&-10\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}1&\color{orangered}{ 10 }&0&-10\\& & & \\ \hline &\color{orangered}{10}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 10 } = \color{blue}{ 10 } $.
$$ \begin{array}{c|rrr}\color{blue}{1}&10&0&-10\\& & \color{blue}{10} & \\ \hline &\color{blue}{10}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 10 } = \color{orangered}{ 10 } $
$$ \begin{array}{c|rrr}1&10&\color{orangered}{ 0 }&-10\\& & \color{orangered}{10} & \\ \hline &10&\color{orangered}{10}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 10 } = \color{blue}{ 10 } $.
$$ \begin{array}{c|rrr}\color{blue}{1}&10&0&-10\\& & 10& \color{blue}{10} \\ \hline &10&\color{blue}{10}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ 10 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrr}1&10&0&\color{orangered}{ -10 }\\& & 10& \color{orangered}{10} \\ \hline &\color{blue}{10}&\color{blue}{10}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 10x+10 } $ with a remainder of $ \color{red}{ 0 } $.