The synthetic division table is:
$$ \begin{array}{c|rrrrr}-4&-64&0&1&2&-15\\& & 256& -1024& 4092& \color{black}{-16376} \\ \hline &\color{blue}{-64}&\color{blue}{256}&\color{blue}{-1023}&\color{blue}{4094}&\color{orangered}{-16391} \end{array} $$The solution is:
$$ \dfrac{ -64x^{4}+x^{2}+2x-15 }{ x+4 } = \color{blue}{-64x^{3}+256x^{2}-1023x+4094} \color{red}{~-~} \dfrac{ \color{red}{ 16391 } }{ x+4 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 4 = 0 $ ( $ x = \color{blue}{ -4 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&-64&0&1&2&-15\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-4&\color{orangered}{ -64 }&0&1&2&-15\\& & & & & \\ \hline &\color{orangered}{-64}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ \left( -64 \right) } = \color{blue}{ 256 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&-64&0&1&2&-15\\& & \color{blue}{256} & & & \\ \hline &\color{blue}{-64}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 256 } = \color{orangered}{ 256 } $
$$ \begin{array}{c|rrrrr}-4&-64&\color{orangered}{ 0 }&1&2&-15\\& & \color{orangered}{256} & & & \\ \hline &-64&\color{orangered}{256}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ 256 } = \color{blue}{ -1024 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&-64&0&1&2&-15\\& & 256& \color{blue}{-1024} & & \\ \hline &-64&\color{blue}{256}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 1 } + \color{orangered}{ \left( -1024 \right) } = \color{orangered}{ -1023 } $
$$ \begin{array}{c|rrrrr}-4&-64&0&\color{orangered}{ 1 }&2&-15\\& & 256& \color{orangered}{-1024} & & \\ \hline &-64&256&\color{orangered}{-1023}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ \left( -1023 \right) } = \color{blue}{ 4092 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&-64&0&1&2&-15\\& & 256& -1024& \color{blue}{4092} & \\ \hline &-64&256&\color{blue}{-1023}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ 4092 } = \color{orangered}{ 4094 } $
$$ \begin{array}{c|rrrrr}-4&-64&0&1&\color{orangered}{ 2 }&-15\\& & 256& -1024& \color{orangered}{4092} & \\ \hline &-64&256&-1023&\color{orangered}{4094}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -4 } \cdot \color{blue}{ 4094 } = \color{blue}{ -16376 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-4}&-64&0&1&2&-15\\& & 256& -1024& 4092& \color{blue}{-16376} \\ \hline &-64&256&-1023&\color{blue}{4094}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -15 } + \color{orangered}{ \left( -16376 \right) } = \color{orangered}{ -16391 } $
$$ \begin{array}{c|rrrrr}-4&-64&0&1&2&\color{orangered}{ -15 }\\& & 256& -1024& 4092& \color{orangered}{-16376} \\ \hline &\color{blue}{-64}&\color{blue}{256}&\color{blue}{-1023}&\color{blue}{4094}&\color{orangered}{-16391} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -64x^{3}+256x^{2}-1023x+4094 } $ with a remainder of $ \color{red}{ -16391 } $.