The synthetic division table is:
$$ \begin{array}{c|rrr}0&10&-35&-7\\& & 0& \color{black}{0} \\ \hline &\color{blue}{10}&\color{blue}{-35}&\color{orangered}{-7} \end{array} $$The solution is:
$$ \dfrac{ 10x^{2}-35x-7 }{ x } = \color{blue}{10x-35} \color{red}{~-~} \dfrac{ \color{red}{ 7 } }{ x } $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rrr}\color{blue}{0}&10&-35&-7\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}0&\color{orangered}{ 10 }&-35&-7\\& & & \\ \hline &\color{orangered}{10}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 10 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&10&-35&-7\\& & \color{blue}{0} & \\ \hline &\color{blue}{10}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -35 } + \color{orangered}{ 0 } = \color{orangered}{ -35 } $
$$ \begin{array}{c|rrr}0&10&\color{orangered}{ -35 }&-7\\& & \color{orangered}{0} & \\ \hline &10&\color{orangered}{-35}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -35 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&10&-35&-7\\& & 0& \color{blue}{0} \\ \hline &10&\color{blue}{-35}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -7 } + \color{orangered}{ 0 } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrr}0&10&-35&\color{orangered}{ -7 }\\& & 0& \color{orangered}{0} \\ \hline &\color{blue}{10}&\color{blue}{-35}&\color{orangered}{-7} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 10x-35 } $ with a remainder of $ \color{red}{ -7 } $.