Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{11}}{\sqrt{2}}\cdot2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{22}}{2}\cdot2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{22}}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{22}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }\sqrt{22}\end{aligned} $$ | |
| ① | Multiply in a numerator. $$ \color{blue}{ \sqrt{11} } \cdot \sqrt{2} = \sqrt{22} $$ Simplify denominator. $$ \color{blue}{ \sqrt{2} } \cdot \sqrt{2} = 2 $$ |
| ② | $$ \color{blue}{ \sqrt{22} } \cdot 2 = 2 \sqrt{22} $$$$ \color{blue}{ 2 } \cdot 1 = 2 $$ |
| ③ | Divide both numerator and denominator by 2. |