Tap the blue circles to see an explanation.
| $$ \begin{aligned}8\sqrt{98}-\sqrt{72}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}56\sqrt{2}-6\sqrt{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}50\sqrt{2}\end{aligned} $$ | |
| ① | $$ 8 \sqrt{98} =
8 \sqrt{ 7 ^2 \cdot 2 } =
8 \sqrt{ 7 ^2 } \, \sqrt{ 2 } =
8 \cdot 7 \sqrt{ 2 } =
56 \sqrt{ 2 } $$ |
| ② | $$ - \sqrt{72} =
- \sqrt{ 6 ^2 \cdot 2 } =
- \sqrt{ 6 ^2 } \, \sqrt{ 2 } =
- 6 \sqrt{ 2 }$$ |
| ③ | Combine like terms |