Tap the blue circles to see an explanation.
| $$ \begin{aligned}3 \cdot \frac{\sqrt{5}}{\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3 \cdot \frac{\sqrt{15}}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3\sqrt{15}}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{15}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }\sqrt{15}\end{aligned} $$ | |
| ① | Multiply in a numerator. $$ \color{blue}{ \sqrt{5} } \cdot \sqrt{3} = \sqrt{15} $$ Simplify denominator. $$ \color{blue}{ \sqrt{3} } \cdot \sqrt{3} = 3 $$ |
| ② | $$ \color{blue}{ 3 } \cdot \sqrt{15} = 3 \sqrt{15} $$$$ \color{blue}{ 1 } \cdot 3 = 3 $$ |
| ③ | Divide both numerator and denominator by 3. |