Tap the blue circles to see an explanation.
| $$ \begin{aligned}(\sqrt{6}+5)(\sqrt{6}-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6-5\sqrt{6}+5\sqrt{6}-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-19\end{aligned} $$ | |
| ① | $$ \color{blue}{ \left( \sqrt{6} + 5\right) } \cdot \left( \sqrt{6}-5\right) = \color{blue}{ \sqrt{6}} \cdot \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot-5+\color{blue}{5} \cdot \sqrt{6}+\color{blue}{5} \cdot-5 = \\ = 6- 5 \sqrt{6} + 5 \sqrt{6}-25 $$ |
| ② | Combine like terms |