Tap the blue circles to see an explanation.
| $$ \begin{aligned}(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3-\sqrt{6}-\sqrt{6}+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5-2\sqrt{6}\end{aligned} $$ | |
| ① | $$ \color{blue}{ \left( \sqrt{3}- \sqrt{2}\right) } \cdot \left( \sqrt{3}- \sqrt{2}\right) = \color{blue}{ \sqrt{3}} \cdot \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot- \sqrt{2}\color{blue}{- \sqrt{2}} \cdot \sqrt{3}\color{blue}{- \sqrt{2}} \cdot- \sqrt{2} = \\ = 3- \sqrt{6}- \sqrt{6} + 2 $$ |
| ② | Combine like terms |