Tap the blue circles to see an explanation.
| $$ \begin{aligned}(5+\sqrt{7})\cdot(5+\sqrt{7})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}25+5\sqrt{7}+5\sqrt{7}+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}32+10\sqrt{7}\end{aligned} $$ | |
| ① | $$ \color{blue}{ \left( 5 + \sqrt{7}\right) } \cdot \left( 5 + \sqrt{7}\right) = \color{blue}{5} \cdot5+\color{blue}{5} \cdot \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot5+\color{blue}{ \sqrt{7}} \cdot \sqrt{7} = \\ = 25 + 5 \sqrt{7} + 5 \sqrt{7} + 7 $$ |
| ② | Combine like terms |