Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{15\sqrt{18}-3\sqrt{242}}{-3\sqrt{8}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{15\sqrt{18}-3\sqrt{242}}{-3\sqrt{8}}\frac{\sqrt{8}}{\sqrt{8}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{180-132}{-24} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{48}{-24} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{48}{24} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}- \, \frac{ 48 : \color{orangered}{ 24 } }{ 24 : \color{orangered}{ 24 }} \xlongequal{ } \\[1 em] & \xlongequal{ }-\frac{2}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-2\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{8}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 15 \sqrt{18}- 3 \sqrt{242}\right) } \cdot \sqrt{8} = \color{blue}{ 15 \sqrt{18}} \cdot \sqrt{8}\color{blue}{- 3 \sqrt{242}} \cdot \sqrt{8} = \\ = 180-132 $$ Simplify denominator. $$ \color{blue}{ - 3 \sqrt{8} } \cdot \sqrt{8} = -24 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Place minus sign in front of the fraction. |
| ⑤ | Divide both the top and bottom numbers by $ \color{orangered}{ 24 } $. |
| ⑥ | Remove 1 from denominator. |