$$ \begin{aligned} 3 &= \frac{9x^2}{x^2+1}-2&& \text{multiply ALL terms by } \color{blue}{ x^2+1 }. \\[1 em](x^2+1)\cdot3 &= (x^2+1)\frac{9x^2}{x^2+1}-(x^2+1)\cdot2&& \text{cancel out the denominators} \\[1 em]3x^2+3 &= 9x^2-(2x^2+2)&& \text{simplify right side} \\[1 em]3x^2+3 &= 9x^2-2x^2-2&& \\[1 em]3x^2+3 &= 7x^2-2&& \text{move all terms to the left hand side } \\[1 em]3x^2+3-7x^2+2 &= 0&& \text{simplify left side} \\[1 em]-4x^2+5 &= 0&& \\[1 em] \end{aligned} $$
$ -4x^{2}+5 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver