$$ \begin{aligned} 3(3x+1)(2x+5)+3(2x\cdot2+5x) &= (2x+7)\cdot2+4(6x-1)+1362&& \text{simplify left and right hand side} \\[1 em]3(3x+1)(2x+5)+3(4x+5x) &= 4x+14+24x-4+1362&& \\[1 em]3(3x+1)(2x+5)+3\cdot9x &= 28x+10+1362&& \\[1 em](9x+3)(2x+5)+27x &= 28x+1372&& \\[1 em]18x^2+45x+6x+15+27x &= 28x+1372&& \\[1 em]18x^2+78x+15 &= 28x+1372&& \text{move all terms to the left hand side } \\[1 em]18x^2+78x+15-28x-1372 &= 0&& \text{simplify left side} \\[1 em]18x^2+50x-1357 &= 0&& \\[1 em] \end{aligned} $$
$ 18x^{2}+50x-1357 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver