$$ \begin{aligned} \frac{1}{x}+\frac{2}{x} &= \frac{1}{3}x&& \text{multiply ALL terms by } \color{blue}{ x\cdot3 }. \\[1 em]x\cdot3\cdot\frac{1}{x}+x\cdot3\cdot\frac{2}{x} &= x\cdot3 \cdot \frac{1}{3}x&& \text{cancel out the denominators} \\[1 em]3+6 &= x^2&& \text{simplify left side} \\[1 em]9 &= x^2&& \text{move all terms to the left hand side } \\[1 em]9-x^2 &= 0&& \text{simplify left side} \\[1 em]-x^2+9 &= 0&& \\[1 em] \end{aligned} $$
$ -x^{2}+9 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver