$$ \begin{aligned} \frac{1}{x}+\frac{1}{2x} &= \frac{2}{3}&& \text{multiply ALL terms by } \color{blue}{ x\cdot2\cdot3 }. \\[1 em]x\cdot2\cdot3\cdot\frac{1}{x}+x\cdot2\cdot3\cdot\frac{1}{2x} &= x\cdot2\cdot3\cdot\frac{2}{3}&& \text{cancel out the denominators} \\[1 em]6+3x^2 &= 4x&& \text{simplify left side} \\[1 em]3x^2+6 &= 4x&& \text{move all terms to the left hand side } \\[1 em]3x^2+6-4x &= 0&& \text{simplify left side} \\[1 em]3x^2-4x+6 &= 0&& \\[1 em] \end{aligned} $$
$ 3x^{2}-4x+6 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver