$ \color{blue}{ 2x^{3}-40x^{2}-50x+1000 } $ is a polynomial of degree 3. To find zeros for polynomials of degree 3 or higher we use Rational Root Test.
The Rational Root Theorem tells you that if the polynomial has a rational zero then it must be a fraction $ \dfrac{p}{q} $, where p is a factor of the trailing constant and q is a factor of the leading coefficient.
The factors of the leading coefficient ( 2 ) are 1 2 .The factors of the constant term (1000) are 1 2 4 5 8 10 20 25 40 50 100 125 200 250 500 1000 . Then the Rational Roots Tests yields the following possible solutions:
$$ \pm \frac{ 1 }{ 1 } , ~ \pm \frac{ 1 }{ 2 } , ~ \pm \frac{ 2 }{ 1 } , ~ \pm \frac{ 2 }{ 2 } , ~ \pm \frac{ 4 }{ 1 } , ~ \pm \frac{ 4 }{ 2 } , ~ \pm \frac{ 5 }{ 1 } , ~ \pm \frac{ 5 }{ 2 } , ~ \pm \frac{ 8 }{ 1 } , ~ \pm \frac{ 8 }{ 2 } , ~ \pm \frac{ 10 }{ 1 } , ~ \pm \frac{ 10 }{ 2 } , ~ \pm \frac{ 20 }{ 1 } , ~ \pm \frac{ 20 }{ 2 } , ~ \pm \frac{ 25 }{ 1 } , ~ \pm \frac{ 25 }{ 2 } , ~ \pm \frac{ 40 }{ 1 } , ~ \pm \frac{ 40 }{ 2 } , ~ \pm \frac{ 50 }{ 1 } , ~ \pm \frac{ 50 }{ 2 } , ~ \pm \frac{ 100 }{ 1 } , ~ \pm \frac{ 100 }{ 2 } , ~ \pm \frac{ 125 }{ 1 } , ~ \pm \frac{ 125 }{ 2 } , ~ \pm \frac{ 200 }{ 1 } , ~ \pm \frac{ 200 }{ 2 } , ~ \pm \frac{ 250 }{ 1 } , ~ \pm \frac{ 250 }{ 2 } , ~ \pm \frac{ 500 }{ 1 } , ~ \pm \frac{ 500 }{ 2 } , ~ \pm \frac{ 1000 }{ 1 } , ~ \pm \frac{ 1000 }{ 2 } ~ $$Substitute the POSSIBLE roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
If we plug these values into the polynomial $ P(x) $, we obtain $ P(5) = 0 $.
To find remaining zeros we use Factor Theorem. This theorem states that if $\frac{p}{q}$ is root of the polynomial then this polynomial can be divided with $ \color{blue}{q x - p} $. In this example:
Divide $ P(x) $ with $ \color{blue}{x - 5} $
$$ \frac{ 2x^{3}-40x^{2}-50x+1000 }{ \color{blue}{ x - 5 } } = 2x^{2}-30x-200 $$Polynomial $ 2x^{2}-30x-200 $ can be used to find the remaining roots.
$ \color{blue}{ 2x^{2}-30x-200 } $ is a second degree polynomial. For a detailed answer how to find its roots you can use step-by-step quadratic equation solver.