$$ \begin{aligned} \frac{x-2}{x+3} &= \frac{3x}{2}&& \text{multiply ALL terms by } \color{blue}{ (x+3)\cdot2 }. \\[1 em](x+3)\cdot2 \cdot \frac{x-2}{x+3} &= (x+3)\cdot2 \cdot \frac{3x}{2}&& \text{cancel out the denominators} \\[1 em]2x-4 &= 3x^2+9x&& \text{move all terms to the left hand side } \\[1 em]2x-4-3x^2-9x &= 0&& \text{simplify left side} \\[1 em]-3x^2-7x-4 &= 0&& \\[1 em] \end{aligned} $$
$ -3x^{2}-7x-4 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver