STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $d_2 = 15.9\, \text{cm}$ and $d_1 = 18.5\, \text{cm}$ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 15.9\, \text{cm} }{ 18.5\, \text{cm} } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = 0.8595 $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( 0.8595 \right) $$ $$ \frac{ \alpha }{ 2 } = 59.2559^o $$$$ \alpha = 59.2559^o \cdot 2 $$$$ \alpha = 118.5119^o $$STEP 2: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 118.5119^o $ we have:
$$ 118.5119^o + \beta = 90^o $$ $$ \beta = 90^o - 118.5119^o $$ $$ \beta = -28.5119^o $$The result has to be greater than zero. $ \Longrightarrow $ The problem has no solution.