STEP 1: find side $ a $
To find side $ a $ use formula:
$$ P = 4 \cdot a $$After substituting $P = 80\, \text{cm}$ we have:
$$ 80\, \text{cm} = 4 \cdot a $$ $$ a = \dfrac{ 80\, \text{cm} }{ 4 } $$ $$ a = 20\, \text{cm} $$STEP 2: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $d_2 = 24\, \text{cm}$ and $a = 20\, \text{cm}$ we have:
$$ d_1 ^ {\,2} + \left( 24\, \text{cm} \right)^{2} = 4 \cdot \left( 20\, \text{cm} \right)^{2} $$ $$ d_1 ^ {\,2} + 576\, \text{cm}^2 = = 1600\, \text{cm}^2 $$ $$ d_1 ^ {\,2} = = 1600\, \text{cm}^2 - 576\, \text{cm}^2 $$ $$ d_1 ^ {\,2} = 1024\, \text{cm}^2 $$ $$ d_1 = \sqrt{ 1024\, \text{cm}^2 } $$$$ d_1 = 32\, \text{cm} $$STEP 3: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $d_2 = 24\, \text{cm}$ and $d_1 = 32\, \text{cm}$ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 24\, \text{cm} }{ 32\, \text{cm} } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{ 3 }{ 4 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{ 3 }{ 4 } \right) $$ $$ \frac{ \alpha }{ 2 } = 48.5904^o $$$$ \alpha = 48.5904^o \cdot 2 $$$$ \alpha = 97.1808^o $$STEP 4: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 97.1808^o $ we have:
$$ 97.1808^o + \beta = 90^o $$ $$ \beta = 90^o - 97.1808^o $$ $$ \beta = -7.1808^o $$The result has to be greater than zero. $ \Longrightarrow $ The problem has no solution.