STEP 1: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $d_1 = 18\, \text{cm}$ and $a = 12\, \text{cm}$ we have:
$$ \left( 18\, \text{cm} \right)^{2} + d_2^2 = 4 \cdot \left( 12\, \text{cm} \right)^{2} $$ $$ 324\, \text{cm}^2 + d_2^2 = 576\, \text{cm}^2 $$ $$ d_2^2 = 576\, \text{cm}^2 - 324\, \text{cm}^2 $$ $$ d_2^2 = 252\, \text{cm}^2 $$ $$ d_2 = \sqrt{ 252\, \text{cm}^2 } $$$$ d_2 = 6 \sqrt{ 7 }\, \text{cm} $$STEP 2: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $d_2 = 6 \sqrt{ 7 }\, \text{cm}$ and $d_1 = 18\, \text{cm}$ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 6 \sqrt{ 7 }\, \text{cm} }{ 18\, \text{cm} } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{\sqrt{ 7 }}{ 3 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{\sqrt{ 7 }}{ 3 } \right) $$ $$ \frac{ \alpha }{ 2 } = 61.8745^o $$$$ \alpha = 61.8745^o \cdot 2 $$$$ \alpha = 123.749^o $$STEP 3: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 123.749^o $ we have:
$$ 123.749^o + \beta = 90^o $$ $$ \beta = 90^o - 123.749^o $$ $$ \beta = -33.749^o $$The result has to be greater than zero. $ \Longrightarrow $ The problem has no solution.