To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $d_2 = 0.484\, \text{cm}$ and $d_1 = 0.746\, \text{cm}$ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 0.484\, \text{cm} }{ 0.746\, \text{cm} } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = 0.6488 $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( 0.6488 \right) $$ $$ \frac{ \alpha }{ 2 } = 40.4507^o $$$$ \alpha = 40.4507^o \cdot 2 $$$$ \alpha = 80.9014^o $$