STEP 1: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ A = \dfrac{ d_1 \cdot d_2 }{ 2 } $$After substituting $A = 20449\, \text{cm}$ and $d_1 = 30\, \text{cm}$ we have:
$$ 20449\, \text{cm} = \dfrac{ 30\, \text{cm} \cdot d_2 }{ 2 } $$$$ 20449\, \text{cm} \cdot 2 = 30\, \text{cm} \cdot d_2 $$$$ 40898\, \text{cm} = 30\, \text{cm} \cdot d_2 $$$$ d_2 = \dfrac{ 40898\, \text{cm} }{ 30\, \text{cm} } $$$$ d_2 = \frac{ 20449 }{ 15 } $$STEP 2: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $d_2 = \dfrac{ 20449 }{ 15 }\, \text{cm}^0$ and $d_1 = 30\, \text{cm}$ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ \frac{ 20449 }{ 15 } }{ 30\, \text{cm} } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{ 20449 }{ 450 }\, \text{cm}^-1 $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{ 20449 }{ 450 }\, \text{cm}^-1 \right) $$$ \arcsin(45.442) $ is not defined $ \Longrightarrow $ The problem has no solution.