STEP 1: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $d_2 = 22\, \text{cm}$ and $a = 84\, \text{cm}$ we have:
$$ d_1 ^ {\,2} + \left( 22\, \text{cm} \right)^{2} = 4 \cdot \left( 84\, \text{cm} \right)^{2} $$ $$ d_1 ^ {\,2} + 484\, \text{cm}^2 = = 28224\, \text{cm}^2 $$ $$ d_1 ^ {\,2} = = 28224\, \text{cm}^2 - 484\, \text{cm}^2 $$ $$ d_1 ^ {\,2} = 27740\, \text{cm}^2 $$ $$ d_1 = \sqrt{ 27740\, \text{cm}^2 } $$$$ d_1 = 2 \sqrt{ 6935 }\, \text{cm} $$STEP 2: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $d_2 = 22\, \text{cm}$ and $d_1 = 2 \sqrt{ 6935 }\, \text{cm}$ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 22\, \text{cm} }{ 2 \sqrt{ 6935 }\, \text{cm} } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{ 11 \sqrt{ 6935}}{ 6935 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{ 11 \sqrt{ 6935}}{ 6935 } \right) $$ $$ \frac{ \alpha }{ 2 } = 7.5904^o $$$$ \alpha = 7.5904^o \cdot 2 $$$$ \alpha = 15.1807^o $$