STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $d_2 = 14\, \text{cm}$ and $d_1 = 48\, \text{cm}$ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 14\, \text{cm} }{ 48\, \text{cm} } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{ 7 }{ 24 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{ 7 }{ 24 } \right) $$ $$ \frac{ \alpha }{ 2 } = 16.9578^o $$$$ \alpha = 16.9578^o \cdot 2 $$$$ \alpha = 33.9155^o $$STEP 2: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ h }{ d_1 } $$After substituting $\alpha = 33.9155^o$ and $d_1 = 48\, \text{cm}$ we have:
$$ \sin \left( \frac{ 33.9155^o }{ 2 } \right) = \dfrac{ h }{ d_1 } $$ $$ \sin( 16.9578 ) = \dfrac{ h }{ 48 } $$ $$ 0.2917 = \dfrac{ h }{ 48 } $$$$ h = 0.2917 \cdot 48 $$$$ h = 14 $$