STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $d_2 = 8.4\, \text{cm}$ and $d_1 = 11.2\, \text{cm}$ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 8.4\, \text{cm} }{ 11.2\, \text{cm} } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = 0.75 $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( 0.75 \right) $$ $$ \frac{ \alpha }{ 2 } = 48.5904^o $$$$ \alpha = 48.5904^o \cdot 2 $$$$ \alpha = 97.1808^o $$STEP 2: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ h }{ d_1 } $$After substituting $\alpha = 97.1808^o$ and $d_1 = 11.2\, \text{cm}$ we have:
$$ \sin \left( \frac{ 97.1808^o }{ 2 } \right) = \dfrac{ h }{ d_1 } $$ $$ \sin( 48.5904 ) = \dfrac{ h }{ 11.2 } $$ $$ 0.75 = \dfrac{ h }{ 11.2 } $$$$ h = 0.75 \cdot 11.2 $$$$ h = 8.4 $$