STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $d_2 = 0.484\, \text{cm}$ and $d_1 = 0.746\, \text{cm}$ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 0.484\, \text{cm} }{ 0.746\, \text{cm} } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = 0.6488 $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( 0.6488 \right) $$ $$ \frac{ \alpha }{ 2 } = 40.4507^o $$$$ \alpha = 40.4507^o \cdot 2 $$$$ \alpha = 80.9014^o $$STEP 2: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ h }{ d_1 } $$After substituting $\alpha = 80.9014^o$ and $d_1 = 0.746\, \text{cm}$ we have:
$$ \sin \left( \frac{ 80.9014^o }{ 2 } \right) = \dfrac{ h }{ d_1 } $$ $$ \sin( 40.4507 ) = \dfrac{ h }{ 0.746 } $$ $$ 0.6488 = \dfrac{ h }{ 0.746 } $$$$ h = 0.6488 \cdot 0.746 $$$$ h = 0.484 $$