STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \beta = 60^o $ we have:
$$ \alpha + 60^o = 90^o $$ $$ \alpha = 90^o - 60^o $$ $$ \alpha = 30^o $$STEP 2: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \alpha \right) = \dfrac{ h }{ a } $$After substituting $\alpha = 30^o$ and $a = 10\, \text{cm}$ we have:
$$ \sin( 30^o ) = \dfrac{ h }{ 10 } $$ $$ \frac{ 1 }{ 2 } = \dfrac{ h }{ 10 } $$$$ h = \frac{ 1 }{ 2 } \cdot 10 $$$$ h = 5 $$STEP 3: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ \sin \left( \frac{ \beta }{ 2 } \right) = \dfrac{ h }{ d_2 } $$After substituting $\beta = 60^o$ and $h = 5\, \text{cm}$ we have:
$$ \sin \left( \frac{ 60^o }{ 2 } \right) = \dfrac{ h }{ d_2 } $$ $$ \sin( 30^o ) = \dfrac{ 5\, \text{cm} }{ d_2 } $$ $$ \frac{ 1 }{ 2 } = \dfrac{ 5\, \text{cm} }{ d_2 } $$ $$ d_2 = \dfrac{ 5\, \text{cm} }{ \frac{ 1 }{ 2 } } $$ $$ d_2 = 10\, \text{cm} $$