STEP 1: find height $ h $
To find height $ h $ use formula:
$$ A = a \cdot h $$After substituting $A = 52.5\, \text{cm}$ and $a = 20\, \text{cm}$ we have:
$$ 52.5\, \text{cm} = 20\, \text{cm} \cdot h $$$$ h = \dfrac{ 52.5\, \text{cm} }{ 20\, \text{cm} } $$$$ h = 2.625 $$STEP 2: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \alpha \right) = \dfrac{ h }{ a } $$After substituting $h = 2.625\, \text{cm}^0$ and $a = 20\, \text{cm}$ we have:
$$ \sin \left( \alpha \right) = \dfrac{ 2.625 }{ 20\, \text{cm} } $$ $$ \sin \left( \alpha \right) = 0.1313\, \text{cm}^-1 $$ $$ \alpha = \arcsin\left( 0.1313\, \text{cm}^-1 \right) $$ $$ \alpha = 7.5418^o $$STEP 3: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ h }{ d_1 } $$After substituting $\alpha = 7.5418^o$ and $h = 2.625\, \text{cm}^0$ we have:
$$ \sin \left( \frac{ 7.5418^o }{ 2 } \right) = \dfrac{ h }{ d_1 } $$ $$ \sin( 3.7709 ) = \dfrac{ 2.625 }{ d_1 } $$ $$ 0.0658 = \dfrac{ 2.625 }{ d_1 } $$ $$ d_1 = \dfrac{ 2.625 }{ 0.0658 } $$ $$ d_1 = 39.9134 $$