STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \beta = 60^o $ we have:
$$ \alpha + 60^o = 90^o $$ $$ \alpha = 90^o - 60^o $$ $$ \alpha = 30^o $$STEP 2: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $\alpha = 30^o$ and $d_1 = 5\, \text{cm}$ we have:
$$ \sin \left( \frac{ 30^o }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$ $$ \sin( 15^o ) = \dfrac{ d_2 }{ 5 } $$ $$ 0.2588 = \dfrac{ d_2 }{ 5 } $$$$ d_2 = 0.2588 \cdot 5 $$$$ d_2 = 1.2941 $$STEP 3: find area $ A $
To find area $ A $ use formula:
$$ A = \dfrac{ d_1 \cdot d_2 }{ 2 } $$After substituting $d_1 = 5\, \text{cm}$ and $d_2 = 1.2941\, \text{cm}$ we have:
$$ A = \dfrac{ 5\, \text{cm} \cdot 1.2941\, \text{cm} }{ 2 }$$$$ A = \dfrac{ 6.4705\, \text{cm}^2 }{ 2 } $$$$ A = 3.2352\, \text{cm}^2 $$