STEP 1: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $d_2 = 12\, \text{cm}$ and $a = 13\, \text{cm}$ we have:
$$ d_1 ^ {\,2} + \left( 12\, \text{cm} \right)^{2} = 4 \cdot \left( 13\, \text{cm} \right)^{2} $$ $$ d_1 ^ {\,2} + 144\, \text{cm}^2 = = 676\, \text{cm}^2 $$ $$ d_1 ^ {\,2} = = 676\, \text{cm}^2 - 144\, \text{cm}^2 $$ $$ d_1 ^ {\,2} = 532\, \text{cm}^2 $$ $$ d_1 = \sqrt{ 532\, \text{cm}^2 } $$$$ d_1 = 2 \sqrt{ 133 }\, \text{cm} $$STEP 2: find area $ A $
To find area $ A $ use formula:
$$ A = \dfrac{ d_1 \cdot d_2 }{ 2 } $$After substituting $d_1 = 2 \sqrt{ 133 }\, \text{cm}$ and $d_2 = 12\, \text{cm}$ we have:
$$ A = \dfrac{ 2 \sqrt{ 133 }\, \text{cm} \cdot 12\, \text{cm} }{ 2 }$$$$ A = \dfrac{ 24 \sqrt{ 133 }\, \text{cm}^2 }{ 2 } $$$$ A = 12 \sqrt{ 133 }\, \text{cm}^2 $$