To find side $ a $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $d_1 = 15\, \text{cm}$ and $d_2 = 6\, \text{cm}$ we have:
$$ \left( 15\, \text{cm} \right)^{2} + \left( 6\, \text{cm} \right)^{2} = 4 \cdot a^2 $$ $$ 225\, \text{cm}^2 + 36\, \text{cm}^2 = 4 \cdot a^2 $$ $$ 4 \cdot a^2 = 261\, \text{cm}^2 $$ $$ a^2 = \frac{ 261\, \text{cm}^2 }{ 4 } $$ $$ a^2 = \frac{ 261 }{ 4 }\, \text{cm}^2 $$ $$ a = \sqrt{ \frac{ 261 }{ 4 }\, \text{cm}^2 } $$$$ a = \frac{ 3 \sqrt{ 29}}{ 2 }\, \text{cm} $$