STEP 1: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ A = \dfrac{ d_1 \cdot d_2 }{ 2 } $$After substituting $A = 222\, \text{cm}$ and $d_2 = 4\, \text{cm}$ we have:
$$ 222\, \text{cm} = \dfrac{ d_1 \cdot \left( 4\, \text{cm} \right)^{4} }{ 2 } $$$$ 222\, \text{cm} \cdot 2 = d_1 \cdot \left( 4\, \text{cm} \right)^{4} $$$$ 444\, \text{cm} = 4\, \text{cm} \cdot d_1 $$$$ d_1 = \dfrac{ 444\, \text{cm}}{ 4\, \text{cm} } $$$$ d_1 \approx 35.3323 $$STEP 2: find side $ a $
To find side $ a $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $d_1 = 35.3323\, \text{cm}^0$ and $d_2 = 4\, \text{cm}$ we have:
$$ 35.3323 + \left( 4\, \text{cm} \right)^{2} = 4 \cdot a^2 $$ $$ 1248.3725 + 16\, \text{cm}^2 = 4 \cdot a^2 $$ $$ 4 \cdot a^2 = 1264.3725 $$ $$ a^2 = \frac{ 1264.3725 }{ 4 } $$ $$ a^2 = 316.0931 $$ $$ a = \sqrt{ 316.0931 } $$$$ a = 17.779 $$