STEP 1: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ A = \dfrac{ d_1 \cdot d_2 }{ 2 } $$After substituting $A = 14\, \text{cm}$ and $d_1 = 7\, \text{cm}$ we have:
$$ 14\, \text{cm} = \dfrac{ 7\, \text{cm} \cdot d_2 }{ 2 } $$$$ 14\, \text{cm} \cdot 2 = 7\, \text{cm} \cdot d_2 $$$$ 28\, \text{cm} = 7\, \text{cm} \cdot d_2 $$$$ d_2 = \dfrac{ 28\, \text{cm} }{ 7\, \text{cm} } $$$$ d_2 = 4 $$STEP 2: find side $ a $
To find side $ a $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $d_1 = 7\, \text{cm}$ and $d_2 = 4\, \text{cm}^0$ we have:
$$ \left( 7\, \text{cm} \right)^{2} + 4 = 4 \cdot a^2 $$ $$ 49\, \text{cm}^2 + 16 = 4 \cdot a^2 $$ $$ 4 \cdot a^2 = 65\, \text{cm}^2 $$ $$ a^2 = \frac{ 65\, \text{cm}^2 }{ 4 } $$ $$ a^2 = \frac{ 65 }{ 4 }\, \text{cm}^2 $$ $$ a = \sqrt{ \frac{ 65 }{ 4 }\, \text{cm}^2 } $$$$ a = \frac{\sqrt{ 65 }}{ 2 }\, \text{cm} $$