STEP 1: find side $ b $
To find side $ b $ use Pythagorean Theorem:
$$ a^2 + b^2 = d^2 $$After substituting $a = 21\, \text{cm}$ and $d = 28\, \text{cm}$ we have:
$$ \left( 21\, \text{cm} \right)^{2} + b^2 = \left( 28\, \text{cm} \right)^{2} $$ $$ b^2 = \left( 28\, \text{cm} \right)^{2} - \left( 21\, \text{cm} \right)^{2} $$ $$ b^2 = 784\, \text{cm}^2 - 441\, \text{cm}^2 $$ $$ b^2 = 343\, \text{cm}^2 $$ $$ b = \sqrt{ 343\, \text{cm}^2 } $$$$ b = 7 \sqrt{ 7 }\, \text{cm} $$STEP 2: find area $ A $
To find area $ A $ use formula:
$$ A = a \cdot b $$After substituting $a = 21\, \text{cm}$ and $b = 7 \sqrt{ 7 }\, \text{cm}$ we have:
$$ A = 21\, \text{cm} \cdot 7 \sqrt{ 7 }\, \text{cm} $$$$ A = 21\, \text{cm} \cdot 7 \sqrt{ 7 }\, \text{cm} $$$$ A = 147 \sqrt{ 7 }\, \text{cm}^2 $$