Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{8}}{\sqrt{98}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{8}}{\sqrt{98}}\frac{\sqrt{98}}{\sqrt{98}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{28}{98} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 28 : \color{orangered}{ 14 } }{ 98 : \color{orangered}{ 14 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2}{7}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{98}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{8} } \cdot \sqrt{98} = 28 $$ Simplify denominator. $$ \color{blue}{ \sqrt{98} } \cdot \sqrt{98} = 98 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 14 } $. |