Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{70}}{\sqrt{85}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{70}}{\sqrt{85}}\frac{\sqrt{85}}{\sqrt{85}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{238}}{85} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{238}}{17}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{85}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{70} } \cdot \sqrt{85} = 5 \sqrt{238} $$ Simplify denominator. $$ \color{blue}{ \sqrt{85} } \cdot \sqrt{85} = 85 $$ |
| ③ | Divide both numerator and denominator by 5. |