Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{67}}{\sqrt{80}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{67}}{\sqrt{80}}\frac{\sqrt{80}}{\sqrt{80}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{335}}{80} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{335}}{20}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{80}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{67} } \cdot \sqrt{80} = 4 \sqrt{335} $$ Simplify denominator. $$ \color{blue}{ \sqrt{80} } \cdot \sqrt{80} = 80 $$ |
| ③ | Divide both numerator and denominator by 4. |