Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{6}-1}{2\sqrt{6}+4\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{6}-1}{2\sqrt{6}+4\sqrt{5}}\frac{2\sqrt{6}-4\sqrt{5}}{2\sqrt{6}-4\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12-4\sqrt{30}-2\sqrt{6}+4\sqrt{5}}{24-8\sqrt{30}+8\sqrt{30}-80} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{12-4\sqrt{30}-2\sqrt{6}+4\sqrt{5}}{-56} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{6-2\sqrt{30}-\sqrt{6}+2\sqrt{5}}{-28} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-6+2\sqrt{30}+\sqrt{6}-2\sqrt{5}}{28}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 2 \sqrt{6}- 4 \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( \sqrt{6}-1\right) } \cdot \left( 2 \sqrt{6}- 4 \sqrt{5}\right) = \color{blue}{ \sqrt{6}} \cdot 2 \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot- 4 \sqrt{5}\color{blue}{-1} \cdot 2 \sqrt{6}\color{blue}{-1} \cdot- 4 \sqrt{5} = \\ = 12- 4 \sqrt{30}- 2 \sqrt{6} + 4 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( 2 \sqrt{6} + 4 \sqrt{5}\right) } \cdot \left( 2 \sqrt{6}- 4 \sqrt{5}\right) = \color{blue}{ 2 \sqrt{6}} \cdot 2 \sqrt{6}+\color{blue}{ 2 \sqrt{6}} \cdot- 4 \sqrt{5}+\color{blue}{ 4 \sqrt{5}} \cdot 2 \sqrt{6}+\color{blue}{ 4 \sqrt{5}} \cdot- 4 \sqrt{5} = \\ = 24- 8 \sqrt{30} + 8 \sqrt{30}-80 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 2. |
| ⑤ | Multiply both numerator and denominator by -1. |