Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{6}}{\sqrt{54}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{6}}{\sqrt{54}}\frac{\sqrt{54}}{\sqrt{54}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18}{54} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 18 : \color{orangered}{ 18 } }{ 54 : \color{orangered}{ 18 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{54}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{6} } \cdot \sqrt{54} = 18 $$ Simplify denominator. $$ \color{blue}{ \sqrt{54} } \cdot \sqrt{54} = 54 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 18 } $. |