Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{56}}{\sqrt{90}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{56}}{\sqrt{90}}\frac{\sqrt{90}}{\sqrt{90}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{35}}{90} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 12 \sqrt{ 35 } : \color{blue}{ 6 } } { 90 : \color{blue}{ 6 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{35}}{15}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{90}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{56} } \cdot \sqrt{90} = 12 \sqrt{35} $$ Simplify denominator. $$ \color{blue}{ \sqrt{90} } \cdot \sqrt{90} = 90 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 6 } $. |