Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{56}}{\sqrt{1}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\sqrt{56} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}} \sqrt{ 4 \cdot 14 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \sqrt{ 4 } \cdot \sqrt{ 14 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2\sqrt{14}\end{aligned} $$ | |
| ① | Remove 1 from denominator. |
| ② | Factor out the largest perfect square of 56. ( in this example we factored out $ 4 $ ) |
| ③ | Rewrite $ \sqrt{ 4 \cdot 14 } $ as the product of two radicals. |
| ④ | The square root of $ 4 $ is $ 2 $. |