Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{5}}{\sqrt{35}-5}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{5}}{\sqrt{35}-5}\frac{\sqrt{35}+5}{\sqrt{35}+5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{7}+5\sqrt{5}}{35+5\sqrt{35}-5\sqrt{35}-25} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5\sqrt{7}+5\sqrt{5}}{10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\sqrt{7}+\sqrt{5}}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{35} + 5} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{5} } \cdot \left( \sqrt{35} + 5\right) = \color{blue}{ \sqrt{5}} \cdot \sqrt{35}+\color{blue}{ \sqrt{5}} \cdot5 = \\ = 5 \sqrt{7} + 5 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{35}-5\right) } \cdot \left( \sqrt{35} + 5\right) = \color{blue}{ \sqrt{35}} \cdot \sqrt{35}+\color{blue}{ \sqrt{35}} \cdot5\color{blue}{-5} \cdot \sqrt{35}\color{blue}{-5} \cdot5 = \\ = 35 + 5 \sqrt{35}- 5 \sqrt{35}-25 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 5. |