Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{5}}{\sqrt{11}+3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{5}}{\sqrt{11}+3}\frac{\sqrt{11}-3}{\sqrt{11}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{55}-3\sqrt{5}}{11-3\sqrt{11}+3\sqrt{11}-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{55}-3\sqrt{5}}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{11}-3} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{5} } \cdot \left( \sqrt{11}-3\right) = \color{blue}{ \sqrt{5}} \cdot \sqrt{11}+\color{blue}{ \sqrt{5}} \cdot-3 = \\ = \sqrt{55}- 3 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{11} + 3\right) } \cdot \left( \sqrt{11}-3\right) = \color{blue}{ \sqrt{11}} \cdot \sqrt{11}+\color{blue}{ \sqrt{11}} \cdot-3+\color{blue}{3} \cdot \sqrt{11}+\color{blue}{3} \cdot-3 = \\ = 11- 3 \sqrt{11} + 3 \sqrt{11}-9 $$ |
| ③ | Simplify numerator and denominator |