Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{45}}{\sqrt{32}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{45}}{\sqrt{32}}\frac{\sqrt{32}}{\sqrt{32}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{10}}{32} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 12 \sqrt{ 10 } : \color{blue}{ 4 } } { 32 : \color{blue}{ 4 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{10}}{8}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{32}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{45} } \cdot \sqrt{32} = 12 \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ \sqrt{32} } \cdot \sqrt{32} = 32 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 4 } $. |