Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{42}}{\sqrt{14}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{42}}{\sqrt{14}}\frac{\sqrt{14}}{\sqrt{14}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14\sqrt{3}}{14} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{3}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }\sqrt{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{14}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{42} } \cdot \sqrt{14} = 14 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \sqrt{14} } \cdot \sqrt{14} = 14 $$ |
| ③ | Divide both numerator and denominator by 14. |