Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{4}}{\sqrt{4}\cdot8}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{4}}{\sqrt{4}\cdot8}\frac{\sqrt{4}}{\sqrt{4}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4}{32} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 4 : \color{orangered}{ 4 } }{ 32 : \color{orangered}{ 4 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{8}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{4}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{4} } \cdot \sqrt{4} = 4 $$ Simplify denominator. $$ \color{blue}{ 8 \sqrt{4} } \cdot \sqrt{4} = 32 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 4 } $. |