Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{343}}{3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ \sqrt{ 49 \cdot 7 } }{ 3 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{ \sqrt{ 49 } \cdot \sqrt{ 7 } }{ 3 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{7\sqrt{7}}{3}\end{aligned} $$ | |
| ① | Factor out the largest perfect square of 343. ( in this example we factored out $ 49 $ ) |
| ② | Rewrite $ \sqrt{ 49 \cdot 7 } $ as the product of two radicals. |
| ③ | The square root of $ 49 $ is $ 7 $. |