Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{3}-\sqrt{3}}{2\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{0}{2\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{0}{2\sqrt{5}}\frac{\sqrt{5}}{\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{0}{10} \xlongequal{ } \\[1 em] & \xlongequal{ }0\end{aligned} $$ | |
| ① | Simplify numerator and denominator |
| ② | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}} $$. |
| ③ | Multiply in a numerator. $$ \color{blue}{ 0 } \cdot \sqrt{5} = 0 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{5} } \cdot \sqrt{5} = 10 $$ |