Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{25}}{\sqrt{18}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{25}}{\sqrt{18}}\frac{\sqrt{18}}{\sqrt{18}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15\sqrt{2}}{18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 15 \sqrt{ 2 } : \color{blue}{ 3 } } { 18 : \color{blue}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5\sqrt{2}}{6}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{18}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{25} } \cdot \sqrt{18} = 15 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \sqrt{18} } \cdot \sqrt{18} = 18 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 3 } $. |